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ar 1 E ‘arE,
Sx=—ugh = F(TemTo) [1— gig + BELEIE] 74

At the large distances where the diffusion approximation is valid for p%a? > 1 we
can use the expression for Sx at @r 3> 1 to obtain the total energy flux density

1 ] ”n
So = S, (1 + W) = 2 (T —T) (7.5)
This implies that the radiant energy flux density over the whole space is
16eaT, 3 .
§= o [.;- — E,(ar)— arE; (ar)] (T — Te) (7.6)

We see here that in the region ar «£ 1 the influence of the molecular mode of the
energy transfer is dominant and the radiant energy flux is practically absent, When
or > 1 ,the fluz tends exponentially to the limit defined by the radiant tranfer appro-
ximation, and is a small quantity of the order of (po)-2S«.

The authors express their gratitude to V, G, Levich for assessment of the results,

BIBLIOGRAPHY

1. Chandrasekhar, S,, Radiation transfer, 2nd ed,, Dover, 1960,
2, Kuznetsov,E,S,, Radiant equilibrium in a gaseous shell surrounding a per-
fectly black sphere, Izv, Akad, Nauk SSSR, ser, geofiz,, N3, 1951,
3. Zel'dovich,Ia,B, and Raizer,Iu,P,, Physics of Shock Waves and High-
temperature Hydrodynamic Phenomena, 2nd ed,, M. "Nauka”, 1966,
Translated by L. K,

INFINITE ELASTIC LAYER AND HALF-SPACE
UNDER THE ACTION OF A RING-SHAPED DIE

PMM Vol, 32, N5, 1968, pp. 894-907

G, M, VALOV
(Kostroma)
(Received December 25, 1967)

The problem of pressure due to an axisymmetric ring-shaped die on an elastic half-space
and layer was examined in [1 and 2], In these papers the boundary value problem of the
theory of elasticity is reduced to a linear integral equation of the second kind with a
kemel given by a set of infinite measure, In [3] the problem of pressure due to a ring-
shaped die on an elastic layer is reduced to a Fredholm integral equation of the second
kind by means of approximate substitution of the kermnel of the integral equation of the
first kind. Normal stresses under the die are expressed through the derivative of the solu-
tion of this equation, In papers [4 and 5] the problem of pressure due to an axisymmetric
ring-shaped die on a half-space was solved by approximate methods,

In this paper the axisymmetric problem of pressure due to a ring-shaped die on an
infinite elastic layer and half-space is solved and also the problem of torsion of the elas-
tic layer and half-space under the influence of a coupled rigid die, In addition to the
die, the half-space and layer are under the influence of a steady-state temperature field,
The solution of boundary value problems are presented in the form of integrals which
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contain an unknown function which is determined by triple integral equations, In this
connection problems related to the pressure of the die are reduced to one type of triple
integral equations and problems of torsion to another type of triple equations, Solutions
of the first as well as the second type of triple integral equations are presented in the
form of integrals containing two auxiliary functions which, being given on adjacent inter-
vals, form one discontinuous function, This function is found from the integral equation
of Fredholm of the second kind, The law of stress distribution under the die is found, In
this connection the indicated stresses are expressed directly through solutions of the equa-
tion of Fredholm,

1, Equations of Duhamel-Neumann for the case of axisymmetric thermoelastic defor-
matjon of a body have the form

(1~ 3+ (1 —20) 5 (5

NPT I A ) =sti a2

Here O is the bulk deformation, O is the Poisson ratio, 7 is the temperature of the
body, @ is the constant coefficient of linear expansion due to temperature, u,, u, are
projections of the displacement vector in a cylindrical system of coordinates r, @, z

Solution of Eqs, (1.1) is presented in the form [6)]

—1 1
=T =0) or (Z‘53+‘51)» uz=63'—T(1——6)"dz(63+62) (1.2)

where 63 is an arbitrary harmonic function, (')1 and 62 are harmonic functions related to
temperature by the relationship 52 (5, . ,
Y Poae—8) g, (g2 1)1 (1.3)
0z2 \
where the temperature 7' is assumed to be a harmonic function, The components of the
stress tensor corresponding to Eqgs, (1.2) are as follows:

aur,) =21+ 5)%
(1.1).

— o2

G ‘-)4_‘5 00. IFal
6, = gy 55| 208 b+ s (8= 8| + TESD Mgy

G Jz

¢ s 9 (5—05) s "
o = iy [+ 0 + g gt — 20 | — B (1.4)
—G 13 #(6:—8 2: -
6¢='2—(‘1—__—5)[7W(Z‘53+61)+]—:—25’—(,23z—2'}')—‘ o 1} t
— d 22 (1 ;
Trz 4(1 GG) or 0z (2263+61+62)+G 63 <:___~____._d'ijzz)(‘>

Here G is the shear modulus,

Equations (1,2) and (1,4) are used for the solution of contact problems examined
below for the infinite elastic layer and half-space, For the case of the infinite layer the
harmonic functions entering into these equations are taken in the form

o0
8= [4s(M)shAz + A, () ch Az} Jo (Ar) dh

400

{1420 shz 4 4, () ehhz] Jo (Ar) dh (1.5)

[}
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400
8= [As(\)shdz + A () ch Azl Jo (Ar) dh
0
where A, (A), A, (X),...,Ae (A) are unknown functions which are determined from the

condition of relationship (1, 3) and from boundary conditions,

In the following we shall assume the temperature T (r, 2) as a given function, to be
a solution of some boundary value problem for the Laplace equation for the layer
=13 !l, 0<r < 4 oo. Therefore we consider it to be representable by the
improper integral +oo

T(r,2) =\ [C1(M)shAz + Cy (M) chAz]J, (hz)dA (1.6)
0

where functions Cy (A) and C, (A) are determined from boundary conditions, i, e, from

the temperature conditions on boundary planes z = == [. The condition of relation-
ship (1, 3) gives the following dependence between unknown functions:

AN = AWM —LCN), AWM =AM—KCR) @7

r=2(1—2)(1—0)

In the case of the half-space we take the harmonic functions entering into Eqs, (1.2)

in the form v +-00
= § A eI dh, 8= § A, (k)™ Jo(Ar)dr
’ oo ° (1.8)

8= § A e, (hr)ah
0
The temperature is considered to be representable by the improper integral

irad
T{r,z)= | C(A)e™ Jy(Ar)dh (1.9)

where the function C (A) is determined from the temperature conditions on the bound-
ary of the half-spacez >» (. The condition of the relationship (1. 3) gives the following
dependence between the unknown functions 4, (A) and 4, (&) :

A (M) =AM + 57 C(N) (1.10)

2, The boundary value problems examined below are reduced to the following triple
integral equations (*) o0

\ MM Ja(Ar)dh = Fi(r)  (0<r<a) (2.1)
“+ oo
VA ii—gmisndd=F()  w<r<n (22)
L]

*) The integral equations to be solved here were examined by Cooke [7] and Tranter 8]
for g(A) = 0 and Fy(r) = 0, The kernel of the integral equation of the second kind ob-
tained by Cooke has a nonsummable square, Therefore the question of existence of solu-
tion of equations remained open, In the paper of Tranter, on the other hand, triple inte-
gral equations are reduced to the equivalent problem of dual series equations,
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o0
S}.A(L)Jo(xr)dx 0 (R<r<t ) (2.3)

Here A (A) is an unknown function, while g (A), F; (r) and F, (r) are given func-
tions, We assume that function g (A)is continuous, while A% g (7\.) is absolutely integra-
ble over [0, 4 oc); the function F; (r) fs such that the fntegral

t

WL C Ry (r)dr
(a*— ) S‘-ﬁ—;;—:-——;;' 0<t<a)

[

becomes zero for £ = () and turns out to be a function which is square-summable,
We are looking for the solution of triple integral equations in the form
a R -}o0

Ay = ou(t) sinredr + {ga (1) coshede + § @s(t)coshedt  (2.4)
1] a

where it is assumed that
lim g (¢) (¢ — ) = lim @ (1) (t— ) =0, @1(0)=0, gs(+00)=0 (2.9)

Here Py (6), @5 () and @3 (¢) are unknown functions which must be found by sub-
stitution of function (2, 4) into Eqgs, (2, 1)—(2. 3). Completing integration by parts we
obtain

AN = {5 @1’ (£) [c0s At — cos ha] dt + @y (R) [sin AR — sin Aa] —
R ’ +o0
—§ @' (9 [sin At — sin Aa] dt — gy (R) sin AR — ’S @' (f)sinhds} (2.6)
[

Substituting function (2, 8) into Egs, (2. 1) and (2. 3) and utilizing integrals

Vil 0 forrer
= ort
§ Jo(Ar)sin Mdl.-—-{ B for 1>y
+o0 . -
. (rd—-a)~"  for t<r
) Jo (hr) cos ks {"% fr S @7
we obtain
(RO =— I+ A0 0<r<a)
]
=eco a
@y (dt ’ ]
5 VA= —§s(r. e (B)dt (R<t< 4 0o)
@ (R) BB _wR) :
S =Ymn ~Va—n Vh-n - @8

1 dt — e q:;(t)dt
) Vo—r
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Solutions of Abel's equations (2. 8) have the form

?aar 2 d ("'[Fl(')—a(")] dr "o

q’ ( ) V‘ti._ rs M ¢ <G
0
2 d(
o) =—— g\ Nt D’ @dr  R<1<+o0)
0
4e0
: re(r,)dr 4, B—a' (Rt 400
No(t,‘t): S —-—-—-—-——-_'/.T__‘. =—2-ln‘——,_t, ( 0<T<a )
From this a
o1(t) = Sﬂﬂ‘}_'l_—tf-)-]-dr+cl. Ps(t) =— 'i—SNo("w 1)@y’ (v)dv + ¢y
1 [
or, computing the mtegraus in the right paris we obtain
s (%) dv 2 ki -.') d-:
qh-(ﬁ=-—;S pOf L (BOF w0 o<i<a 29
a R
2 a
pt)=—2{BOT  riicto (2.10)
0
2 (CrFy(r)dr

%1 (8) = S s 2.11)

where the constants ¢; and ¢, are equal to zero by virtue of conditions (2, 5).
We rewrite Eq, (2.2) as follows:

+o00

S A (M) Jo(Ar)dh = Fy, (r) (s r<R) (2.12)
° 4o

Fu()=§ g0) AQM)Jo(hr)dr + Fy () (2.13)

Substituting function (2. 4) into Egs. (2. 12) and (2, 13) and utilizing integrals (2, 7) and
Expressions (2, 10) we obtain

R
(i =Fat)  @<r<m (2.14)
a R
Fu(n=—{010) My (v, v +§0a () My (v, N dv + Fe (1) (2.15)
Here _:eo : oo
Mi(x,r)=1 \ gA) N 0)Jo(hr)dh— § g(A)Jo(Ar)sinArdh
oo ° oo (2.16)
My(x,r)= S g (M) Jo(Ar)cosArdr, N (A, %)= -:— 5 CT(?:;;E‘

Solution of Abel's equation (2, 14) has the form
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t
2‘1“21 (a) 2 S tFn (f) dr

uV:*—a* J va—r

Equation (2, 9) is transformed substituting into it Expression @2 (¢) from (2,17) and
Ps (2) from (2, 10).
As a result of transformations, the indicated equation assumnes the form

¢ 4tLF. R — o\
Pt = Ku® (6, 2) 01 (o) do + 0200 arotg (=7 +

0

s

g2 (t) = @ <t<R) (2.17)

4t
3

Fay' () R — r2\'"1 ,
TEO arotg (“‘*?) dr + 131 (1) (2.18)

R N TR T S

Into Eqs, (2. 18) and (2, 17) which were obtained we substitute Expression (2, 15) of
function Fgy (r). As a result of this these equations are converted to the form
a

91(t) = {[Ku® ¢, 2) + K (¢, 2)] 01 (2) dz +
o

cae../;;:,

R
+{ K@ D@ dz+m ) 0<i<a) (2.20)

a. R
e (0 = (Eu® ¢, D01 @) dz + (K (1, 2) 9 (@) dz + 1 () @<t <R)
[] a

Here

— a?\'h
Ku®(t,2) = [:/hg(x 12 aretg (R :,:) +
I
Y
g (r*— % "arctg (R*-—- ;:) aMla(:‘ ) dr ]
4t [ M. (x, B2 e g2\
A [V‘Z‘(f:% wotg (G=5) "+
R
+S (r*— 13" arc tg (R *::) " aM’;:' 0 ] (2.24)

t
® _ . 2M(z,a) 2' S t  OMy(z,r)
Kt a = Ve w ) ya=m

t
K“(l) (t’ x) — 2tMe (1‘, a) + S ¢ M, (x' r) dr

;;Vg: Voo—ri ar
2% ( gn()d 2 d(rR()a
£ %21 {¥) atT r#a{riar
nn () = — 2 ( BOE 4@, tal) = 25 (220
v k14 o 12— p3

It is evident from Eq, (2. 20) that function @ (£) indeed satisfies condition (2. 5).
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Instead of function @, (£) and @3 (£) we introduce new unknown functions @,, (t)

and @y (2), writing
o) =Va@— )" 0u(®), () =Va (B —a) " gu(t) (222

We further put
Ku (t, z) — (a’-—- ta)'l. (a’-— :c’)"" [Ku(l) (t, :c) + Kn(a) (t, :c)]
Ky (t, 2) = (6* — %) (22 — a?) ™" K1, (¢, 2) (2.23)
K (8, 2) = (2 — a%)™ (a* — 287" Ky P (¢, 2)

Ksa (8, 2) = (2 — a%)"* (z* — a¥)™" Kpu™ (¢, 2)
Then Egs, (2,20) are rewritten in the following manner:
a R

Qu(t) = § Ky (¢t z) pu (2)dz + S Kia(t, 2) 9ur (z)dz+ %1 (1) (0 <1< a) (2.24)

a R
Par (t) = SKn (¢, 2) P11 (z) dz + SKu (t 2) P (Z)dx 4+ %2 () @<IKA)
1] a
On the segment [0, R] we introduce functions

_(eu(® 0<t<a) ) 0<t<a) .
PO ={m @<:<n), O ={00 w<ichn (220

and on the rectangle 0 Ct K R, 0 <z < R the kemel K (¢, z), writing

Kn(,2) 0€1<e, 0gzLa)
Kiz(t,2) 0t <La, a2z R)

K(t, z)= Knt,?) (@<t<R 0<z<a) (2.26)
Kn(t,z) @<IQR, a2z R)
Then Eqs, (2.24) are written in the form of one integral equation
R
q»(t)=SK(t, ) (@)dz 4% () O<ISR) (2.27)

1]
It is easy to show that for conditions imposed above on function g (A) the kernel
K (¢, x)is square-summable, Therefore, if function Fy (r) satisfies conditions indicated
above while F, (r) is such that function ) (¢) is square-summable, then Eq, (2.27)
will be a Fredholm integral equation of the second kind,
Substituting (2, 10) into (2, 4) we obtain
a

R
Ay = o1(t) sin At — eV (A, 114t 4§ @ (&) coshede (2.28)
0 a
+00
2 cos Ardv 0AL F o0
N(k,t)=—“—§ o e (tha ) (2.29)

In this manner the solution of triple integral equations (2, 1)—(2, 3) is given by For-
mula (2, 28) where functions @, (¢) and ¢, () are expressed through the solution of
integral equation of Fredholm with the aid of Eqgs, (2,22) and (2.25), The kernel and
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the free term of {ntegral equatfon (2,27) are given by (2, 11), (2, 19), (2, 21), (2. 23),(2.25)
and (2, 26),
Now let us examine triple integral equations of the second type
400

{ A"AQ) (dh = Fi(r)  0<r<a)
APAM[L—g M1 (Ar)dA = Fo(r)  (@<FT<R) (2.30)

MAM I (A AL =0  (R<r < +o0)

ow§ owg L

Here A (A) is an unknown function, It is assumed that g (A) is continuous while
function A2g (A) is absolutely integrable on [0, + oo].

By means of analogous arguments it is established that the solution of these equations
is given by Formula a n (2.31)

Ay = (70,00 + 0N D1 ()t + § g )M, )

Nyi(A, t) .—_._2_+S°L§»_1£ (0<k<+oo )
n B—v 0<1<a

Here

N, ) = ‘1{ [— ", (M) — "0y, (M) + VR L, AR)]

" , (2.32)
¢l (t) =a '(a’ — t’)’ /‘q)ll (t), q)z (t) _— a'/' (tﬁ — aﬂ)-l"(Pu (t)
_[m@®) 0<:<a)
P = {qw) C<I<R)
The function @ (£) is found from the following integral equation:
R
e =\ Kt,vemdr+x(@) 0O<I<A) (2.33)
0
Ku(t,7) 0<t<a, 0<7v<0)
Kt %) = Kn(t, 1) 0St<a, a<T<R)

Ku(t,v) a<t<R, 0<71<0)
Ka(t 1) @ISR aT<RA)

Ku(t, 7)= (42_ o {%‘( )h[}/ﬂ"‘ a® + (a®— %) " arc tg (I_f_"'_l‘.';) ]x

— )

x s+ ()] [m—w e s (B5)]

)
[t o e 10— e+

+ e [7; —ln ’“”] S =)
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Ka(t o) = =02 )"'S [VE=7 4 00— oy aro g (B=0)"]x
X '3;' {-Mg(‘t, r)] dr 4- I;, In gii + 7( 2 )‘u [Vm-f-
+ 13 (a*— 08) rarc tg (‘R — “’) "] M,(x, a)}

Ky (t v) = — o () (tatea)

a(a? — o) \ aYs—at

+ t’S (tt—r3) »3%- [T M;(x, r)} dr}

Kn(t, 0 =—(5)"s (@ —a™ [Mate)

(«* —a)f layr—a*
i
+S o— el [_ M, (v, r)] dr}
My, r) = § [3%7y, (M) - 0NNy (0, 7)) g (A) T (r) dA
0
My r)= { A" ()n, v)J, (Ar) dh
[}

nl) 0<t<a)
“)“{x-(t) @<t<R)

) =(3)" 52 i BV F=a+e@—ryarctg(G=g) | Fala)+

+ § [m + 83 (r*— %) arc tg (R’ —:;’)"'] o [-—- F, (r)] dr 4

) @
0= ~(H i)

We can show that the kemel K (¢, <) is square-summable, Functions #; (r) and
F; (r) are assumed to be such that the free term % (£) is square-summable, In addition
to this it is assumed that the integral ‘S PFy (r) dr

I VE—r

becomes zero for ¢ == 0, Under these conditions (2, 33) will be a Fredholm integral
equation of the second kind,

3, Let us examine the infinite elastic layer, The region occupied by the layer is
expressed in cylindrical coordinates in the following manner:
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_l<z<lv O<r<+ 00, O<q’<2ﬂ
The die which is ring-shaped in plan view and bounded by a surface of revolution is
pressed with an axial force of magnitude P into the elastic layer which is in the tempe-
rature field (1,6). The layer is situated on a rigid smooth foundation, There is no fric-
tion between the die and the layer, The boundary conditions of the problem are written
in the following manner:

T (r ) =0 T.(r,—0)=0, u(r,—0)=0 (0<Sr<+o0) (3.1)
6, (r)=0  0<r<es AIr<+) (3.2)
u,(r, ) =y () @<r<R) 3.3)

We are looking for a solution of the problem in the form of Egs, (1.2),(1.4),(1.5) and
(1.6). In this connection the unknown functions A, (A),..., A4 (A) entering into (1, 5)
must be found from boundary conditions and from relationships (1, 7). We can verify by

direct substitution that functions (1, 2) and (1. 4) satisfy boundary conditions (3. 1) and
that relationships (1, 7) are fulfilled, if functions Ay (A),..., A4 (A) have the following

SXPIESSIONS £ 4 (M) = A1A4 (M) (1 — 26 — AL th M) — 127143, (A)
Ay (M) = M Ay (M) (1 — 26 — Al cth Al) —y2-1A-2C, (A)
Ay (M) = A1 A4 (M) (1 — 26 — AL th M) + y27A2C, (A) (3.4)
Ac(M) = M 145 (M) (1 — 26 — M cth IA) + 7271472C, (A)
i—g (M A
Ay ()= UL A () — 4= ,}’;Lﬁ oy (G — G2 (M) th M

AN = ot A () + Ty (62 () — Ca (h) thM]
Ly (M) = ch Al 4+ M /shAl, Ls(M) =shA — M /chAl
Ly (M) = 1+ thMLg () / La (M)
g (M) = (ch 2AL + 2Al/ sh 2M)™2 [(ch 2AL +- sh 2M)™ -+ 2AL /sh 2Al]  (3.5)
where A (A) is a new unknown function; C, (A) and C; (A) are known functions of inte-

gral (1,6), ¥ is determined by Ed. (1, 7).
Satisfying boundary conditions (3.2) and (3. 3) we obtain triple integral equations

+00
(A4 (rdh=0 O<r<e, B<r<+oo)
. (3.6)

{ A() (1=—g M1 Jo(Ar)dh = Fy(r) @<r<R)

Here g(A) is given by Eq, (3.5) veo
H
Far) = () + g | -G+
H

+ L, (I;,;g;)(;,) [C1(A) — C3 (M) th M]}Jo (Mr)dh. (3.7)

In this manner the solution of the formulated boundary value problem is given by Egs,

(1.2),(1.4),(1, 5) and (1,6), Unknown functions A; (M), ... , A¢ (M) entering into the
integrals (1, 5) are expressed through one unknown function A (A) with the aid of Eas.
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(3.4). For finding A (M) triple integral equations (3, 6) are obtained which in form
coincide with (2, 1)—(2. 3). Therefore their solution is given by Eq, (2, 28) where NV (A,t)
is represented by (2. 29), while functions @, (£) and @5 () are expressed through the
solution of the integral equation of Fredholm (2, 27) with the aid of (2, 22) and (2.25).
We emphasize that in the present problem it is necessary to take into account in writing
the expression for the kernel and the free term of the integral equation (2, 27), that
F; (r) =0, while the functions g (A) and F, (r) are given by (3, 5) and (3.7).
Utilizing integrals (2, 7) we find the formula for distribution of normal stresses under

the die 6,(r, ) =¢e(r) (a<r<R)
R
G (1 d( tp()de
3(")=—1_5{r drS 'Vt’—r'-‘+

%‘i (ﬂpl (:)2) [(r" ) /'m'ctg(f _:)lh VH:Tri .‘ (11:} (3.8)

4, Now let us examine the axisymmetric problem of pressure due to a die which is
ring-shaped in plan view on the elastic half-space z >0 located in the temperature
field (1, 9), There is no friction between the die and the half-space, The boundary con-

o

ditions of the problem are T (r, 0) =0 O r <+ o) (4.1)
6,(r,0)=0 (O<r<a, R<r<+oo) (4.2)
u,(r, 0) =¥ (r) (a<r<RA) (4.3)

where P (r) is a given function,

We are seeking the solution of the problem in the form of Eqs, (1.2),(1.4),(1, 8) and
(1, 9), It is easy to verify that the boundary condition (4, 1) and the relationship (1, 10)
are fulfilled if functions A,(A), 44 (A) and 4 (A) are connected by the relationships

i1 —2 . 1—2
M =—"T"AM+5zCH,  AN=—-"F—A4WN—7FCM

Satisfying boundary conditions (4, 2) and (4, 3), we obtain the following triple integral
equations for determination of function 4 (A):

+oo
S AA (M) Jo(Ar)dh =0 0<r<a, R<r <+ o)
® 4
S A (M) Jo (Ar) dh = Fy () (@<r<R)
Here ¢ +oo
T C()
Fy (=20 (" + 77— Jo (Ar) dA
0

These equations are a particular case of the thriple equations (2. 1), (2. 2), (2. 3).
Therefore their solution is given by (2,28), where N (A, ¢) is given by (2, 29) and func-

tions @, (¢) and @, (f) are given by 2 4 t Fa(r)d

= rF;(r)dr

W =Va@—-t"eu(), @O=-g .V_:’T—_r’
a

Here the function ¢,, (#) is determined from the integrat equation of Fredholm
«

o) ={Kut, Den@detnu®) ©O<i<a)

[}
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()= nf;/; (a3 — 13)'e [r, (a) (a* — 13~ arctg (

R3—aa\'
a% ¢l)

+ SR (r*— g!)"/' Fy' (r) arctg (}:_:;_‘_{’: )% dr]

2 (a*—13)"s R—1t R—z 0<t
Kn(‘.”)=;ri;—_—z—’).,‘(xln R+t’_‘lnﬂ+z)(”_")_l (0<z§:)

The distribution law for normal stresses under the die will be
o, (r,0)=—2"1e(r)
where & (r) is given by (3. 8).
5. Let us examine the problem of torsion of an elastic layer under the action of a

rigid ring-shaped die coupled with it; it is required to find the function v (r, 2) which
satisfies within the region — ! < 2 < I, 0 < r < + oo the differential equation

i a4 9
and on its surface the conditions o +‘F [-’_F(rv) ] =0 (o.1y
v(rn)=%() (@<r<R) (5.2)
T (r, 1) =0 O0<r<a, RLr <+ o) (5.3)
v(r,—)=0  (O<r<+ ) (5.4)

Here ¥ (r) is a given function, The plane z = — 1 is fixed and in the region
a < r < R ofthe plane z ==1 the layer is subjected to torsion, The magnitude of
the moment of external forces on this region is

R
M, =21 e (r, D dr
a
It is easy to verify that the function
+00 o
1 C VAA() [shaz , chhz
v=—3% S cth 2M [sh YRR Yy, ] Jy (hr) dh (5-5)
0
satisfies Eq, (5. 1) and boundary condition (5, 4), while the stress ¥,y has the form
400
G A A (M) [chAz , shAz \
Teo =—"7 S oth 2M [shM + <gar ) T (r)dh (5.6}

Satisfying boundary conditions (5, 3) and (5,4) we obtain triple integral equations for
determination of unknown function 4 (A)

400
VA"AM I, () dh =0  (0<r<e, R<r<+oo)
(]

(M A U —g M Ar)dA = Fi(r)  G<r<BR)
0

Here
F(r) = —¥(r), g(A) = [ch2Al(ch 2Al+sh2 At (5.7)
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These equations coincide with Egs, (2. 30) for F, (A == (), Therefore their solution
is given by Egs, (2, 81)~(2, 33), In writing the kemel and the free term of the integral
equation (2, 33) it is necessary to take into account that in the given problem F, (r) =0,
and functions F3 (r) and g (M) are given by (5, 7).

Utilizing integrals

400 f '
C v, @i —mh 1<r)
§,x J,{'(M)J‘(M)dk:{ 0 (t>r)

(2/ me)"orm r>10
@/ sttt — @ = (r<9)

+00

\ A%, (A0 Ty (Ar) b = {

and Expression(5,6), we find the distribution of stresses under the die

Tz (ry L) =&y (r) alrR)

mhere 2\ 4 [ 2 (v (%) ; R — 7\ 1
&(r)= G(?) '7{-;‘-—5%[(”—-—t’)”'“ctg(r!_r- _}/ﬁﬂ‘:——r_:]dt-*-
0
R
+ o2 o 0 (G i e § 2 o]
R
~+4{ s

8. In the case of torsion of the elastic half-space z > 0 under the action of a rigid
die coupled with it, the boundary conditions of the problem are as follows:
v(rn0=%()  (a<r<R)
T (MO =0 O r<es R r <+ ) (6.1)
Here ¥ () is a given function, In the region a < r R of the boundary plane £ =0
the half-space is subjected to torsion, The magnitude of the moment of external forces
on this region is R
My =2a§ ¥, (r,0)dr
a
We can verify that the function .4
=— S A4 (M) ey (Ar) dA (6.2)
U
satisfies the differential equation (5, 1), The stress t
(6.2} has the form

2 COTTEsponding to displacement

+o00
%o =0 S A A () e 1y () dA
1]
Satisfying boundary conditions (6, 1) we obtain triple integral equations for finding
the unknown function 4 (A) oo
(MA@ nona=0 ©0<r<s A<r<+w)

’+oo 0
{ AhAQ) Iy (Arydh = Fa(r) e<r<na
<]

where
Fa(r) = —%(r) (6.3)

These equations are a particular case of Eqgs, (2,30), Therefore their solution is given
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by (2. 31) in which functions N, (A, t) andn (A, ¢) are written in terms of expressions
(2. 32) while functions @, (¢) and @5 (¢) are given by

@ (1) = a7 (& — ) e qy (1), @ (8) = @t (18 — ey, (1) (6.4)
Here @, (4) is found from the integral equation of Fredholm of the second kind

on(l):= SKu (6, 7) Pu (¥) de 4 b (1) 0<t<a)
[/]

4 (e — 1) 1 [ 1 R—t

1 R—f']
Kn(t,v)= n e -l {2 (x3 — 12) Tln R4t —_‘!-'—ln!i'-‘-'! +
(a -'—l, 18 1 7’ 1 ¥ 4

L

R 1 1 R4+~ R4t
+ [Tr"?f“"n—r] ‘“.R—t}
R
bO=n0+{ KaVu@d

a

R (az_lz)'/. R+t
nir? (vr— a’)'/‘ LR

(6.5)

Klz (t, T) =

Functions ¥, () and ¥ () entering into (6. 4) and (6, 5) are written in terms of Expres-
sions (2, 34) in which F, (r) = 0, while F, (r) is given by Eq, (6, 3).
The distribution of stresses under the die is given by
T (1 0) = — &y () (e<r<R)
Here &, (r) is given by Eq, (5. 8).
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