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s dT x=-~F=~(TO- w[i-&+ (7.4) 

At the large distances where the diffusion approximation is valid for ~‘a* > 1 we 
can use the expression for Sx_at w > 1 to obtain the total energy flux density 

(7.5) 

This Implies that the radiant energy flux density over the whole space Is 

S - Ed (ar) - ar& (cw) 
3 

(T, - T,) (7.6) 

We see here that ln the region ar 4 1 the influence of the molecular mode of the 
energy transfer is dominant and the radiant energy flux is practically absent. When 
ar > 1 , the flux tends exponentially to the limit defined by the radiant tranfer appro- 
ximation, and Is a small quantity of the order of (pa)+,. 

The authors express their gratitude to V. G. Levlch for assessment of the results. 
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The problem of pressure due to an axisymmetric ring-shaped die on an elastic half-space 
and layer was examined in p and 21. In these papers the boundary value problem of the 
theory of elasticity Is reduced to a linear integral equation of the second kind with a 
kernel given by a set of infinite measure. In 133 the problem of pressure due to a ring- 
shaped die on an elastic layer is reduced to a Predholm integral equation of the second 
kind by means of approximate subsdhldon of the kernel of the integral equation of the 
first kind. Normal stresses under the die are expressed through the derivative of the solu- 
don of this equation. In papers 14 and 51 the problem of pressure due to an axlsymmetric 
ring-shaped die on a half-space was solved by approximate methods. 

In this paper the axisymmetric problem of pressure due to a ring-shaped die on an 
infinite elastic layer and half-space is solved and also the problem of torsion of the elas- 
tic layer and half-space under the Influence of a coupled rigid die. In addition to the 
die, the half-space and layer are under the influence of a steady-state temperature field. 
The solution of boundary value problems are presented in the form of integrals which 



918 G. M. Valov 

contain an unknown function which is determined by triple integral equations. In this 

connection problems related to the pressure of the die are reduced to one type of triple 
integral equations and problems of torsion to another type of triple equations. Solutions 
of the first as well as the second type of triple integral equations are presented in the 

form of integrals containing two auxiliary functions which, being given on adjacent inter- 
vals, form one discontinuous function. This function is found from the integral equation 
of Fredholm of the second kind. The law of stress distribution under the die is found. In 
this connection the indicated stresses are expressed directly through solutions of the equa- 
tion of Fredholm. 

1. Equations of Duhamel-Neumann for the case of axisymmetric thermoelastic defor- 
mation of a body have the form 

(1-a)g+(1--2a)+$(~ - 2) =2(1 +a)$ 

(1 _a)~._(Y_2a)i&[r(~ __4)] =a(1 +q$- (l.l) 

Here 8 is the bulk deformation, (3 is the Poisson ratio, T is the temperature of the 
body, cz is the constant coefficient of linear expansion due to temperature, u,, U, are 
projections of the displacement vector in a cylindrical system of coordinates r, cp, z. 

Solution of Eqs, (1.1) is presented in the form [S] 
-i 

&= 4(1-e) ar -Q8s$-8t), l&=63-- & &6a+W (1.2) 

where 6, is an arbitrary harmonic function, b, and 6, are harmonic functions related to 
temperature by the relationship 6;~ (h2 _ sr) 

322 
= Bu(G~- 1)‘I’ (1 .3) 

where the temperature T is assumed to be a harmonic function. The components of the 
stress tensor corresponding to Eqs. (1.2) are as follows : 

(1.4) 

Here G’is the shear modulus. 
Equations (1.2) and (1.4) are used for the solution of contact problems examined 

below for the infinite elastic layer and half-space. For the case of the infinite layer the 

harmonic functions entering into these equations are taken in the form 

+aa 
dr= s [A, (A) sh AZ + A4 (A) ch Xz] J, (hr) dh 

0 
+CQ 

da = t 
a” 

[ A, (A) sh hz $ A,(A) ch hz] J, (hr) dh (1.5) 
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where A, (A), As (A)..!.ss (A) are unknown functions which are determined from the 
condition of relationship (1.3) and from boundary conditions. 

In the following we shall assume the temperature T (r, Z) as a given function, to be 
a solution of some boundary value problem for the Laplace equation for the layer 

-l<z<& O<r<+ 00. Therefore we consider it to be representable by the 

improper integral 

T(r, z) =~[C,(k)shhz+ C+)chhz]J,,(hz)dh (1-G) 

where functions cr (A) and “c, (a) are determined from boundary conditions, i. e. from 
the temperature conditions on boundary planes z = f 1. The condition of relation- 

ship (1.3) gives the following dependence between unknown functions : 

Al(k) = Aa (Iv) - + CI (h), Al (5) = Aa (A) - + C, (A) (1.7) 

r= $1~26)(1-4) 

In the case of the half-space we take the harmonic functions entering into Eqs. (1.2) 
in the form -i-co 

a1 = S A,(h)e-“LJo(hr)dh, a, = 'r A2(h)e-*LJo(5r)dh 
0 0 

a3 = +r 4 (h) e+ Jo (9~) dh 
(1.8) 

0 
The temperature is considered to be representable by the improper integral 

T(r, z)=~~C(~)e~‘J,(hr)dh 
0 

(1.9) 

where the function c (h) is determined from the temperature conditions on the bound- 
ary of the half-space z > 0. The condition of the relationship (1.3) gives the following 

dependence between the unknown functions Al (h) and A, (A) : 

nl(h) = A,(h) + +q) (1.10) 

2. The boundary value problems examined below are reduced to the following triple 
integral equations ( ” ) : +oo 

j hA(h)Jo(hr)dh= F,(r) (O<r<a) (2.1) 
0 

+m 

s A(k) I1-_g(VlJ0(Wdh = F,(r) (a<r_5W (2.2) 
0 

*) The integral equations to be solved here were examined by Cooke [7] and Tranter[8] 
for q(k) = 0 and F,(r) = 0, The kernel of the integral equation of the second kind ob- 
tained by Cooke has a nonsummable square. Therefore the question of existence of solu- 
tion of equations remained open. In the paper of Tranter. on the other hand, triple inte- 
gral equations are reduced to the equivalent problem of dual series equations. 
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A- s kA (k} Jo (?er).dh = 0 @<r<4-4 (2.3) 

Here A (k) is an ounknown function, while g (h), Fa (r’) and Ps (3 are given func- 
tions. We assume that function g (Qis ~n~~o~, while A’ g (11) is absolutely integra- 

ble over [O, +oc);,the function PI (t) is such that the integral 

((&a _ tap t rF1P) dr s o JG=5 
(0 < t da) 

becomes zero for f e=f 0 and turns out to be a function which is square-summable. 

We are looking for the solution of triple integral equations in the form 
a +- 

A (h) = s~~(~~~j~~~~~+ ~~*~~~~~~~~~~+ j (0)3 (t) co9 nt C-It (2.4) 
0 0 

where it is assumed that 

~~(P~(l)(t-u)=~~~n(t)~(t--a)=O, qJr(O)=O, qJs(foo)=O (2.5) 

Here & (I), rps (S) and cpt (r) are unknown functions which must be found by sub- 

stitution of function (3.4) into Eqs. (2.1)-(2.3). Completing integration by parts we 
obtain 

A (X)-c: =+{jlpt’(i) [coskt - 130s ?+a] dt + ‘pi (R) [sin hR - sin ku] - 
0 

R 

- 
s 

(p,’ (t) [sin At - sin Au] dt - cp, (R) sin AR - 
r 

(2.6) 
l 

Substituting function (2.6) into Eqs. (2.1) and (‘2.3) and utilizing integrals 

+- s 
0 

f,(hr)oosLtdA, s’ (r’;‘af” ;; ;$; 
{ 

we obtain 
7 

s 
VI* (0 dt 

o f,lltt 
=--E(r)SJ5(r) (O<r<a) 

$0 s cpr’ 6) dt = jr@, t)q$(t)dt 
,* Jm=a o 

w<t<+@4 

(2.7) 

(2.8) 
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Solutions of Abel’s equations (2.8)‘have the form 
t 

‘pII (t) =-- (0 6 t < 4 

.,‘(t)=-++b(f, 'c)cpi'(t)dq (R<t<+-) 
0 

R<t<+- 
06f6a 

From this t 

or, computing the integrals in the right parts we obtain 

‘pa tt1 
2 a q, (z)dr =-- 
Jc s T’- P (R<r<+=) 

0 

(2.10) 

(2.11) 

where the constants c, and c, are equal to zero by virtue of conditions (2.5). 
We rewrite Eq. (2.2) as follows : 

SW 

s 
/i (k) & (b) dk = Fal (F) WV6RR) (2.12) 

0 

h,(F) = 
s g (A) A (A) Jo (AF) dX -I- FI (d (2.13) 
0 

substituting function (2.4) into Eqs. (2.12) and (2.13) and utilizing integrals (2.7) and 

Expressions (2.10) we obtain 

(o6r 6R) (2.14) 

F,, (t) = - a R 

1 rpl(r) Ml (T, F) dx + 5 ‘PI (4 MS (f, 4 dr + Ft (~1 (2.15) 
0 a 

Here 
-I?- +- 

6 6 
+w (2.16) 

M* (r, r) = s g (h) JO (kf) cos hT da, w, r) =+ 
cos It dt 
+_t(’ 

0 

Solution of Abel’s equation (2.14) has the form 
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t 

Equation (2.9) is transformed substituting into it Expression ipa (t) from (2.1’7) and 

Vrp, 0) from (2.10). 
As a result of transformations, the indicated equation assumes the form 

‘pl (t) = 5 Kit(t) (t, z) ‘pl (5) dx + $F$.& arc tg ysr -I- 
O 

' Fa’(r) 
+-$-e jfra-_ arctg(gr'dr + h(t) (2. us) 

Klr(f)& zj zZ-$pn $$- R-LC 
- %t +Z 1 (9 - ty-’ gz:=:> P.W 

Into Eqs. (2.18) and (2.1’7) which were obtained we substitute Expression (2.15) of 
function FP (r). As a result of this these equations are converted to the form 

%OI = i I&P (tc 4 -t-&l(a)& 41 'PI (4dx -f- 
0 

+ ~~~~"~t, 4(~sW-f- XIP (0 

; 
toe 64 (220) 

a R 

‘ps (t) = j Kdl) (t, 4 (PI (4 dx + s KM@) (4 4 ~a (4 dx + Cal W (a < t 6 w 
a 

Were 

(2.21) 

t 
j&(l) (8, 5) = - 2tM1 65 !?.k - $5 

n ~/r-u’ (I Jfi& 
Kga(‘) (t, x) = mf* (2. a) 

x -C/c-a* 
+ + f v_-& ““8’:’ ‘) dr 

R 

x12(t) = -+s “::y- + Xl1 (0, X21 (4 = 4 f ‘S rFs (r) dr 

It is evident from Eq. (:.i?O) that function Cpr (t) 

o VT=3 

indeed satisfies condition (2.5). 
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Instead of function rpl (t) and ‘pa (t) we introduce new unknown functions (prt (t) 
and cpa (t), writing 

cpl (t) = ma* - ty“Qpj1 (t), ‘P$ (t) = I/;;(6 qJ’y$l (t) (2.22) 
We further put 

Krt (t, 2) = (a” - P)‘14 (as - z’)+ [KtP (t, 5) + &rQ (t, 41 

KIZ (t, 5) = (aa - tap (9 - ap IQ) (t, z) (2.23) 

K** p, 5) = (P - uy”~ (a’ - 9)” IQ) p, 3) 

K,* (t, 5) = (f’ - a’)“’ (9 - ay IQ) (t, s) 

Then Eqs. (2.20) are rewritten in the following manner: 

cpi,(t) = j ~~~ (t, z:) ‘pll (2) dz + IBM (t, 0 9s1 (2) a~ + x1 (0 (0 6 I 6 a) (2.24) 
a 

a R 

(pax (q = 5 %I (t, 4 cpd4 & + SK12 (tc 4 cpw (4 dir + xn (1) (0 6 1 B n) 

On the se;ment [0, R] 
a 

we introduce functions 

‘#II (‘1 
’ @) = 61 Cl 

(0 6 t< 0) XI (1) (0 6 t < 0) (4 6 16 W, ‘(‘)={~(l) @<t(R) (2.25) 

and on the rectangle 0 < t < R, 0 < x < R the kernel K (I, z), writing 

I 

Gr(r, 2) Pdr<a, 06+<a) 

K (t, 2) = 
JGak 2) (Od~<o, a626 R) 
Km@, 11 @6~6R, 06z<a) 
Kn0, 2) (a<r<R, a<z<R) 

Then Eqs. (2.24) are written in the form of one integral equation 

v(t) = jM, NcP(sVz+X(t) (06r<R) 
0 

(2.2(j) 

(2.27) 

It is easy to show that for conditions imposed above on function 6 (h) the kernel 
K (t, z)is square-summable. Therefore, if function Fl (r) satisfies conditions indicated 
above while Fs (r’) is such that function X (t) is square-summable, then Eq. (2.27) 

will be a Fredholm integral equation of the second kind. 
Substituting (2.10) into (2.4) we obtain 

A (h) = i (pl (t) [sin At -ttN(h, tjdt+frp,(t)cos)itdt (2.28) 
0 a 

+oo 

N(X,f)=$ cos hs ds 06k<+w 
P-9 O6t6Q 

(2.20) 

In this manner the solution of triple integral equations (2-l)-(2.3) is given by For- 
mula (2.28) where functions 9, (t) and ‘ps (i) are expressed through the solution of 
Integral equation of Fredholm with the aid of Eqs. (2.22) and (2.25). The kernel and 
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the free term of integral equation (2.27) are given by (2.11).(2.19).(2.21),(2.23),(2.25) 
and (2.26). 

Now let us examine triple integral equations of the second type 

+oO 

s h’,‘“A (A) J1 (kr) dh = F1 (r) (0 <r < 4 
1 

w8 

s I”*A (k) [ 1 - g (A)] J1 (Ir) dA = Fa (r) @<r <RI (2.30) 
0 

+cQ 

s 
X”A (5) J1 (5r) dA = 0 (R<r<+=) 

0 

Here A (A) is an unknown function. It is assumed that g (h) is continuous while 

function hsg (L) is absolutely integrable on [0, + oo]. 
By means of analogous arguments it is established that the solution of these equations 

is given by Formula (I (2.31) 

48’ (5) - 5 1 r”‘Jv,W) + lPNl (A, t)l ‘PI (t) a + f ‘PI (t) q (A, q (1~ 

Here IJ 

N1 (A, t) = + +O” rl(l v)dr 

% 
r,’ -Is ( 

o<A<+: 

96r<a > 

rl (A, t) = $- [- t-“‘J-v, (LO - t-“WI,, (At) + mPJ_,,, !q] 

f&(l) = 2"(fP- t')-'"cp1,(t), 

(2.32) 
'Pa (t) = ayta - a')-"'cp,l(t) 

CPU (4 (0 < f! < a) 
CP(f) = L(1) (adt(R) 

The function cp (f) is found from the following integral equation: 

R 

cp (0 = s K (4 Q ‘p 0) dr + x (0 (O<r<R) 
0 

'Kll(4f) (O<~<% O<r<a) 

K(t, 7) = ' 
Kn(4 d to< 1 <a. abr<R) 

Kal(h ~1 (a<l<R, fJ<t<a) 

Kza(4f) (a<f<R. a<r<n) 

(2.33) 
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-t~)m"sarctgf$$)"'] s [+F*(r)] dr + 

t (2.34) 

We can show that the kernel K (t, r) is square-summable. Functions pa (r) and 
FZ (r) are assumed to be such that the free term X (t) is square-summable. In addition 
to this it is assumed that the integral f 

S t’F, (r) dr 
o )/F 

becomes zero for t = 0. Under these conditions (2.33) will be a Fredholm integral 

equation of the second kind. 

3, Let us examine the Mnite elastic layer. The region occupied by the layer is 
expressed in cyUndrica1 coordinates in the following manner : 
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-l<z<l, o<r<+m, ogcp<2n 
The die which is ring-shaped in plan view and bounded by a surface of revolution is 
pressed with an axial force of magnitude P into the elastic layer which is in the tempe- 
rature field (1.6). The layer is situated on a rigid smooth foundation. There is no fric- 
tion between the die and the layer. The boundary conditions of the problem are written 
in the following manner: 

f,, (r, 4 = 0; 7r2 (t, -I) = 0, u, (r, - I) = 0 (O-sr<+=) (3.1) 

0, (r., 1) = 0 (0 d r < 0, R<r<+=) (3.2) 

uz (r, 1) = 9 (r) PdrdR) (3.3) 

We are looking for a solution of the problem in the form of Eqs. (1.2). (1.4), (1.5) and 

(1.6). In this connection the unknown functions A, (A),... , A6 (h) entering into (1.5) 
must be found from boundary conditions and from relationships (1.7). We can verify by 
direct substitution that functions (1.2) and (1.4) satisfy boundary conditions (3.1) and 
that relationships (1.7) are fulfilled, if functions A, (A),..., Ad (A) have the following 

expressions : 
A,(h) = h-‘fl&)(1-22a--Al t11 hl)-y2-%-aC,(h) 

Aa (h) = h-‘A, (h) (i-,20 - A/! cth AZ) -_2-‘ABaCa (h) 

AS (h) = h-‘A, (h) (1 - 2a - hl th Al) + y2-1A-aC1 (h) (3.4) 
Ad(h) = k--‘A, (h) (I-2a - Al cth Ih) + ~2-‘h-2Ca (h) 

La(h)=chhl+hl/shhl, L,(h)=shhl-?J/chhl 
Ll (h) = 1 + th hlL3 (h) /La(h) 

g (11) = (ch 2hl + 2hZ / sh 2hl)-’ [(ch 2hZ + sh 2hZ)” + 2hl/ sh 2hl] (3.5) 

where A (A) is a new unknown function; Cl (A) and Cs (A) are known functions of inte- 

gral (1.6), y is determined by Eq. (1.7). 
Satisfying boundary conditions (3.2) and (3.3) we obtain triple integral equations 

+oo 

s 
J.A(h)J,(hr)dh=O (O(r<a, R<r<+w) 

1 

+OI 
(3.6) 

s n (A) i.1 --g (VI JO (W dh = Fa (r) (adr6R) 
0 

Here g(h) is given by Eq. (3.5) 

Fa(r)=S(r)+ 4(e7-i) +f y(Ca(h)+ 

+ L1 (E;:)(k) [Cl (A) - Cs (L;th hl]}Jo (hr) dh. (3.7) 

b this manner the solution of the formulated boundary value problem is given by Eqs. 

(1.2),(1.4),(1.5) and (1.6). Unknown functions Al (h), . . . . Aa (h) entering into the 
integrals (1.5) are expressed through one unknown function A (h) with the aid of Eqs. 
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(3.4). For finding A (h) triple integral equations (3.6) are obtained which in form 
coincide with (2.1)-(2.3). Therefore their solution is given by Eq. (2.28) where N (X,t) 

is represented by (2.29). while functions o1 (t) and 9s (t) are expressed through the 
solution of the integral equation of Fredholm (2.27) with the aid of (2.22) and (2.25). 
We emphasize that in the present problem it is necessary to take into account in writing 
the expression for the kernel and the free term of the integral equation (2.2’7). that 

Fl (4 = 0, while the functions g (h) and Fz (r) are given by (3.5) and (3.7). 
Utilizing integrals (2.7) we find the formula for distribution of normal stresses under 

the die 

4. Now let us examine the axisymmetric problem of pressure due to a die which is 
ring-shaped in plan view on the elastic half-space z > 0 located in the temperature 
field (1.9). There is no friction between the die and the half-space. The boundary con- 

ditions of the problem are 7,, (r, oj = o 
(9<r<+m) (4.1) 

6, (r, 0) = 0 (0 6 r < a, R<r<+-1 

4 (6 0) = 9 (4 @<r<fO 
where 9 (r) is a given function. 

(4.2) 

(4.3) 

We are seeking the solution of the problem in the form of Eqs. (1.2). (1.4). (1.8) and 
(1.9). It is easy to verify that the boundary condition (4.1) and the relationship (1.10) 
are fulfilled if functions A,(h), A, (5) and A (A) are connected by the relationships 

Al (a) = - Aa (a) = - - -$ c (A) 

Satisfying boundary conditions (4.2) and (4.3). we obtain the following triple integral 
equations for determination of function A (h): 

+p” 

s 
LA (A) Jo (kr) dX, = 0 (06r<a, R<r<+4 

O -I+ 

s 
A (I.) JO (hr) d;F. = F, (r) (a6rGR) 

Here 

These equations are a particular case of the thriple equations (2.1),(2.2),(2.3). 
Therefore their solution is given by (2.28). where N (L, t) is given by (2.29) and func- 
tions 9, (1) and cp, (1) are given by 

q)l (t) = V; (a’ - Is)+ fp,l (1), 
t rFz(r)dr 

s o v/la 

Here the function ‘pu (1) is determined from the integral equation of Fredholm 
; 

(hl (t) = 
s Ktr (t, 2) ti (2) dz + x1 (:) (9 < t 6 0) 
0 



928 G. hf. Valov 

KU (t, +) = 2 (” - “I ‘14 
sla it---l R - 2’ 

n’ (aa _ &h 
- _ 

R + f* - t In R + + (z’ - rq-’ 

The distribution law for normal stresses under the die will be 

6, (f, 0) = - 2-i e (r) 

where a (r) is given by (3.3). 

6. Let us examine the problem of torsion of an elastic layer under the action of a 
rigid ring-shaped die coupled with it ; it is required to find the function 0 (r, Z) which 
satisfies within the region - 1 < z Q 1, 0 < r <’ + oo the differential equation 

and on its surface the conditions 
-$++ [-+GJ = 0 (5.1) 

(5.2) 

&. (r, I) = 0 (O<r <a, R<r<+4 (5.3) 

v (r, --t)=O tacit<+ =I (5.4) 

Here q (r) is a given function. The plane Z = - 1 is fixed and in the region 
a < r < R of the plane z = 1 the layer is subjected to torsion. The magnitude of 
the moment of external forces on this region is 

It is easy to verify that the function 

I +O” JKA (A) 
UC-- 

sh &z 
2 F b cth 2AA [ 

shM + $!$I J, WI dh. 

satisfies Eq, (5.1) and boundary condition (5.4), while the stress r, has the form 
+0 

G s kq”I A (A) ch AZ 
rr, = -7 ctb 2l.l -+ shkl 

s J&)dh 1 
0 

(5.5) 

(5.6) 

Satisfying boundary conditions (5.3) and (5.4) we obtain triple integral equations for 
determination of unknown function A (h) 

+cO 

s h”lA (h) J, (Iv) dh = 0 v<r<49 R<r<+w) 

0 

+oO 

s 
L”‘A (h) [ I- g (A)] J1 (hr) dk = FI (r) @drQW 

0 

Here 
F(r) = - q(r), g(5) = [ch 2 hl(ch 2 I.1 + sh 2 Al)]-’ (5.7) 



lnflnite tlutlc layer and half-cprce under the action of ;a die 929 

These equations coincide with Eqs. (2.30) for Ft (r) = 0. Therefore their solution 
is given by Eqs. (2.31)-(2.33). In writing the kernel and the free term of the integral 
equation (2.33) it is necessary to take into account that in the given problem Ft (f) =O, 
and functions pa (r} and 6 (8,) are given by (5.7). 

Utilizing integrals 

and Expression(5,6),we find the distribu~on of stresses under the die 

i d t! 
m-e_ 

r dr s TI (4 dr 
v+-g 

6, In the case of torsion of the elastic h:lf-space I > 0 under the action of a rigid 
die coupled with it, the boundary conditions of the problem are as follows: 

u (r, 0) = $ (4 (aGr<R) 
tzcp (r, 0) = 6 (OQr<a, R<r<-l-4 (6-i) 

Here 9 (i) is a given function. In the region a < r Q R of the boundary plane z =0 
the half-space is subjected to torsion. The magnitude of the moment of external forces 
on this region is R 

M, = 2x 
s 

rst,, (r, 0) dr 
Cl 

We can verity that the function +oo 

’ v=- 
s 

A’h A (A) e”” Jl (hr) dl. (R2) 

” 
satisfies the differential equation (5.1). The stress + ,corresponding to displacement 
(6.2) has the form +w 

‘cz(o’C s 
hY’A (k) c-~” J1 (b) dL 

0 

Satisfying boundary conditions (6.1) we obtain triple integral equations for finding 
the unknown function A (A) +oo 

F 
I% A (A) Jr (Ar) dA = 0 (06r<4,J3<r<+-) 

,-w b 
{ ~“g~(~)~~(~r) d?+ I= Fa(r) (b<r<N 

where t; 

4(r)= --9(r) (6.3) 
These equations are a particular case of Eqs. (2.30). Therefore their solution is given 
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by (2.31) in which functions N, (h, t) and ‘1 @, t) are written in terms of expressions 

(2.32) while functions ‘pl (1) and ‘Ps (r) are given by 

‘PI (1) = a*‘* (a’ - tap ‘PII (t), lp, (t) = 0’11 (1’ - a’)-” %a (t) (6.4) 

Here qlI (I) is found from the integral equation of Fredholm of the second kind 

cpll(0 := s h-11 (f, r) VI1 (r) dr + h (0 (9 6 I< 4 

0 

4 Tafaa- t+ 
&0*v) ,, 

i 
=- 

(01-T ) a % 2 (%a - f*) 
&-t R R 

1 fl+r 
-&l* + 

I 

b (t) = XI (t) i- 5 KU (4 7) %a (T) dT 
a 

a~ (aa - t+ 
Ku (4 T) =s (rs- $)'/r InR+‘ R - t 

(6.5) 

Functions xs (t) and X1 (t) entering into (6.4) and (6.5) are written in terms of Expres- 
sions (2.34) in which F, (r) = 0, while F, (r) is given by Eq. (6.3). 

The distribution of stresses under the die is given by 

vzW (r, 9) = - el (r) (e<r<R) 

Here e, (r) is given by Eq. (5.8). 
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